Another large link to the metre

So I’m watching a video from 2012, featuring a young-looking Graham Hancock

Which, before they got all wooshie about the Mayan 21 December 2012 end of the world thing, had some interesting info. In particular, the observation concerning the difference between two sides of the great pyramid, and its height, which goes like this:

two side of pyramid = 440 x 2 cubits. In metres, that’s 460.7669 m.
height of pyramid = 280 cubits = 146.6077 m

Difference = 460.7669 – 146.6077  = 314.1592 which you may recognise as 100 times pi.

Continue reading

Poly wants a cracker

Some updates to the zeptractor, probably done for now until I figure out if this was just a humongous waste of time or not. Well at least I got to learn something about svg drawing.

Changes:
1. added assorted famous regular polygons: triangle, square, pentagon, hexagon, heptagon, octagon, dodecagon.
2. resized inner circle to divide radius in golden ratio. Also marked where circumference would be divided in golden ration (both directions, measuring from zero).
3. added radian marks (up to 6, only in normal direction).
4. added tau divisors … they’re more logical than the pi divisors. Arial has a sucky tau symbol.
5. put phi symbol on bare radius to avoid confusion.

The zeptractor, the tool for people who really know their way around a circle.

Continue reading

If it’s not a tomb, then what is it?

Further to my thoughts (which covers some ground covered by others already, so they were not all new ideas) about why the great pyramid is not a tomb, let me speculate on what I think it really was.

But before we get there, it is possible that it may be a tomb, but not in the parts that we know about. There may be another entrance on the west wall (i.e. the one away from the Sphinx), with a separate tunnel and room system like the Bent Pyramid. This possibility is strengthened by the fact that there are different stone types used in the lower courses, which make a triangular pattern, with the current known entrance at the apex of the one on the northern side.

Continue reading

Why the Great Pyramid is not a tomb

Some thoughts on why the Great Pyramid is not a tomb… we’ll get to what it may be in another post.

Various other people have pointed out things about the Great Pyramid which indicate that it was not a tomb. These include:

1. The sarcophagus was empty.
2. It’s a bit small for receiving a king in full burial kit … mummified with layers of cotton wrapping, then assorted nested boxes, gold death mask, etc.
3. The sarcophagus (and the entire pyramid) are devoid of any carvings or inscriptions. There’s absolutely nothing along the lines of “I came. I saw. I built.” or “Here lies King Khufu with his six wives and 97 children. He was The Man” or even “Warning: no tomb robbers (or Englishmen) allowed.” Nil. Nada. Unlike your typical tomb.

Continue reading

Egyptians being annoying again

Was playing around with the calculator, still exploring exactly what that kink in the alignment of the three pyramids is.

The great pyramid has a designed height of 280 cubits.

The second pyramid has a designed height of 274 cubits.

That’s a difference of 6 cubits. Which is not very interesting until we turn that difference into metres (and you may guess where this is going …)

6 cubits = 6 x π/6 metres = π metres = 3.1415926+ metres ….

Am still pondering difference in height to the third pyramid …. nothing jumping out like π at the moment….

Some thoughts on the cubit (and foot)

According to the historians, the cubit is an ancient measure based on the length of the arm plus hand, like this:

Cubit and Royal cubit.

where the normal cubit is 6 palms long, and the Royal Cubit 7 palms long. Well, that’s one explanation of the origin. The other is that they got it from the gods, a long long time ago.

Now there are several problems with the common cubit as shown above. In the first place, it’s generally accepted as being 17.6 or 18 inches long. That’s 44.7 to 45.7 cm.

Continue reading

Another way of getting the cubit

[Note: I’m not entirely convinced that my “average year” calculations are correct. I was looking for a way to get 364.75 and since it is tantalizingly close to 365.25 I was looking for a way to get there from that. It may be better to just use 365.25 – 0.5 … now need a Reason Why.]

I was playing around with the calculator and stumbled across this curious sum.

Let’s start with how long a year is. As you should know, it’s 365.25 days for a solar year. If however, we measure against the background stars, it’s about 364.25 days.

From Wikipedia: “Both the stellar day and the sidereal day are shorter than the mean solar day by about 3 minutes 56 seconds. ”

If we take those 3 minutes 56 seconds == 236 seconds, and work out the difference over a year (x 365), we get 86140 seconds, which is 23.927777 hours, effectively one day.

So if we take the average of a solar year and stellar year, we get (365.25 + 364.25)/2 which is 364.75 days, or more precisely, 364.7436921 days.

Now we do this sum.

Continue reading